Elastic energy propagation in a strongly scattering 1D laboratory model
نویسندگان
چکیده
Laboratory ultrasonics provides an ideal opportunity for studying wave propagation in random media. Models are relatively easy to construct and both the phase and amplitude of the wave field can be measured, so we can separate the coherent from the incoherent intensity. Here we show detailed measurements of wave propagation in a 1D strongly scattering medium that fit the theory of radiative transfer for both short times (ballistic propagation) and long times (diffusive propagation). Including late time information gives us a unique opportunity to separate scattering attenuation from intrinsic absorption.
منابع مشابه
1D energy transport in a strongly scattering laboratory model.
Radiative transfer (RT) theory is often invoked to describe energy propagation in strongly scattering media. Fitting RT to measured wave field intensities is rather different at late times, when the transport is diffusive, than at intermediate times (around one extinction mean free time), when ballistic and diffusive behavior coexist. While there are many examples of late-time RT fits, we descr...
متن کاملپراکندگی کشسان یونهای N15 توسط C12 درMeV 23
Scattering of 15N ions with the energy of Elab = 23 MeV on the CH2(Au) target is investigated. Elastic scattering of these ions in the angular range of 7°-19° was measured by employing the silicon strip detector, “LEDA”. Using the measured scattering data, deviation of ion beam, number of incident ions on the target and differential cross sections of the 12C(15N, 15N)12C elastic scattering in ...
متن کاملWave Propagation at the Boundary Surface of Elastic Layer Overlaying a Thermoelastic Without Energy Dissipation Half-space
The present investigation is to study the surface wave propagation at imperfect boundary between an isotropic thermoelastic without energy dissipation half-space and an isotropic elastic layer of finite thickness. The penetration depth of longitudinal, transverse, and thermal waves has been obtained. The secular equation for surface waves in compact form is derived after developing the mathemat...
متن کاملEffect of Rotation and Stiffness on Surface Wave Propagation in a Elastic Layer Lying Over a Generalized Thermodiffusive Elastic Half-Space with Imperfect Boundary
The present investigation is to study the surface waves propagation with imperfect boundary between an isotropic elastic layer of finite thickness and a homogenous isotropic thermodiffusive elastic half- space with rotation in the context of Green-Lindsay (G-L model) theory. The secular equation for surface waves in compact form is derived after developing the mathematical model. The phase velo...
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کامل